Short communication

C1-esterase inhibitor reduces infarct volume after cortical vein occlusion

A. Heimann, T. Takeshima, G. Horstick, O. Kempski

Institute for Neurosurgical Pathophysiology, Johannes Gutenberg-University Mainz, 55101 Mainz, Germany

Accepted 11 May 1999

Abstract

In order to clarify the role of complement as a mediator of cerebral infarct growth, we inhibited the classical complement activation pathway in a photochemical cortical vein occlusion model. Immediately after occlusion, rats were infused with either 0.9% saline (vehicle), or C1-esterase inhibitor (C1-INH) over 30 min. Regional cerebral blood flow (rCBF) decreased after occlusion, and was about 50% of baseline after 2 h. No difference was noted between experimental groups. Mean arterial blood pressure (MABP) and arterial blood gases were likewise unaffected by the treatment. However, administration of C1-INH had significantly reduced infarct volume by 72%, as evaluated after 5 days survival. Thus, the neuroprotective effect cannot be explained by an improvement of cerebral perfusion but rather by protection of the parenchyma in the penumbra.

Keywords: Complement; C1-esterase inhibitor; Cerebral blood flow; Cortical vein occlusion; Rat
Fig. 1. Time course of rCBF measured by LD scanning in the two experimental groups (means of medians determined from 36 local measurements). Therapy was immediately initiated after thrombosis. The photothrombosis of two cortical veins induced a critical flow reduction which aggravated with time. However, there was no difference in rCBF or MABP (inset) between the both groups.

Fig. 2. Brain damage as found 5 days after venous occlusion. Panel A demonstrates the spatial extent of the cortical infarcts in both groups. The resulting infarct volumes are compared in panel B. Symbols represent individual animals. Complement inhibition by C1-INH reduced infarct by 72%.
blood pressure (MABP; baseline: 88.2 ± 1 mmHg vehicle; 88.1 ± 2 mmHg C1-INH) was measured in the proximal section of the carotid artery (Gould, USA). In order to occlude two adjacent cortical veins the photosensitizing dye Rose Bengal was slowly infused (50 mg/kg b.wt) into the femoral vein. Veins were selectively illuminated for 10 min via a micromanipulator assisted light guide (200 μm fibre, 540 nm, 5000–6000 lx; for detail see Ref. [8]). Immediately after photothrombosis either 0.5 ml C1-INH (20 IU/kg b.wt) or 0.9% saline were slowly infused over 30 min into the carotid artery. During the first 15 min after venous occlusion a slight transient increase of MABP was observed (Fig. 1; inset). MABP raised maximal to 93 ± 1 mmHg (ns) in the vehicle, and to 94 ± 2 mmHg in the C1-INH group 5 min after photothrombosis (p < 0.05 vs. baseline). There was no statistical difference between the experimental groups. At the same time rCBF was reduced by 40% in the vehicle (24.7 ± 2 LDU), and by 33% in the C1-INH group (26.7 ± 3 LDU), respectively. After these initial changes MABP decreased slightly towards the end of observation time in both groups. Two hours after venous occlusion rCBF had identically decreased to approximately 50% of baseline in both groups (22.5 ± 3 LDU vehicle; 22.2 ± 3 LDU C1-INH). Although there was no difference at any time between the experimental groups neither in MABP nor in rCBF, C1-INH treatment had a dramatic effect on histological outcome. Five days after the experiment the animals were subjected to perfusion fixation (4% paraformaldehyde). Coronal sections (3 μm) were stained with haematoxylin/eosin. Histomorphometry was done in brain slices with the maximally infarcted slice centered. Infarction size on adjacent slices was evaluated in 90 μm steps. Infarction volume Vf was calculated from infarcted areas Ai and the distance between sections (d = 90 μm) according to the formula:

\[V_f = \sum A_i \cdot d. \]

Infarct volume after complement inhibition (0.86 ± 0.23 mm³) was only 27.7% (p < 0.05) of that of the vehicle group (3.09 ± 0.62 mm³). Likewise, the infarcted areas as determined in matched slices were significantly smaller in the C1-INH group than in the vehicle group (Fig. 2).

Our main finding is a profound neuroprotective effect of C1-INH treatment in cortical vein thrombosis. C1-INH does not influence hemodynamic parameters, blood gases (data not shown) and microcirculation. Thus, the neuroprotective effect is probably due to a direct protection of the parenchyma, and cannot be explained by amelioration of cerebral perfusion. The photochemical cortical vein thrombosis model induces a slowly growing thrombus going along with a gradually progressing significant reduction of rCBF and a reproducible infarction volume [8]. In comparison to arterial occlusion blood drains depending on the available collaterals and the outflow resistance, causing low blood flow rates, and even retrograde perfusion of tissue sections with desaturated blood. Therefore, tissue perfusion is reduced rather homogeneously and has characteristics of the ischemic penumbra [3]. As shown earlier for other organs [6] complement may be an important mediator of traumatic and ischemic brain damage. The definite triggers of complement activation in cerebral ischemia/reperfusion, however, are still to be determined. It is now generally accepted, that brain cells can generate a complete, functional complement system, which, once activated, can contribute to damage of glia and neurons [7].

Characteristics of neuronal death after complement activation have been characterized in vitro [9]. Neuroprotection after early C1-INH treatment suggests a major role of plasma complement components in this model, e.g., as in myocardial ischemia where plasma C3a was elevated in early reperfusion [5]. Parenchymal complement constituents may be inhibited only at later stages of infarct development, when blood–brain barrier already is disrupted and C1-INH can reach the neuropil.

In conclusion, the early inhibition of the classical complement activation pathway with C1-INH may be helpful to protect the penumbra zone in focal cerebral ischemia and human stroke. Further studies are necessary to elucidate the optimal time window remaining for complement inhibition after stroke.

Acknowledgements

This is to acknowledge that the first two authors contributed equally to this paper. We wish to thank A. Schollmayer and M. Malzahn for their excellent technical assistance. We acknowledge the gift of C1-esterase inhibitor Berinert by Centeon.

References

